

### Kimberlite Additives: A Novel Solution for Humate Removal from Bauxite Ore in Bayer's Process

### **Authors:**

Dr S C Patnaik

Dr Narayana Reddy N

Mr Shivakumar D C

Mr Hemanth T L







Introduction



**Result and Discussion** 



Challenges with Humate



Conclusion



Kimberlite's Solution



**Experimental Studies** 



### Introduction

### "Bauxite: Leading the Way in Aluminium Production"

High Aluminum Content:

Typically containing 40-50% Aluminium oxide.

Global Availability: 3<sup>rd</sup> most abundant element.
Major Al producers : Australia, China, and India.

➢Bauxite is a reddish-brown to white sedimentary rock, rich in Aluminium oxide (Al₂O₃.3H₂O).

> Impurities : Iron oxide, Silicon, Titanium oxides and Humate.



Source: <u>https://depositphotos.com/photo/bauxite-26234323.html</u>



# **The Process of Transforming Bauxite into Aluminium:**

| Mining-Bauxite |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | $(A_{0}\cup A_{0}\cup A_{0}\cup$ |
|                | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Open Pit Mining

#### Ore Beneficiation/Dressing

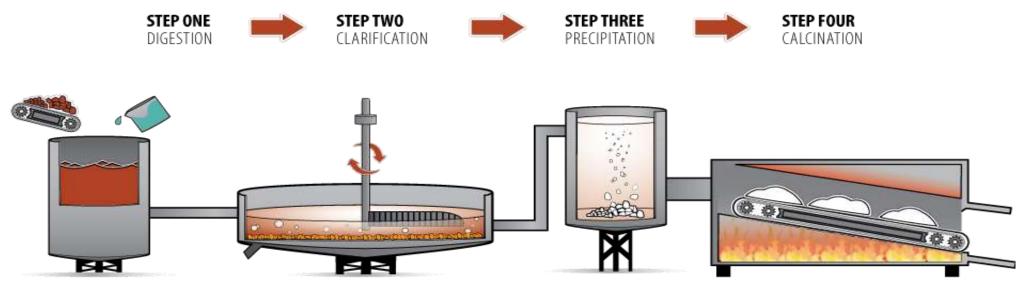
- Crushing
- Grinding
- Pre-Treatment (Optional)

#### Hydrometallurgy / Bayer's Process

- Digestion
- Liquid Solid Separation
- Precipitation
- Calcination

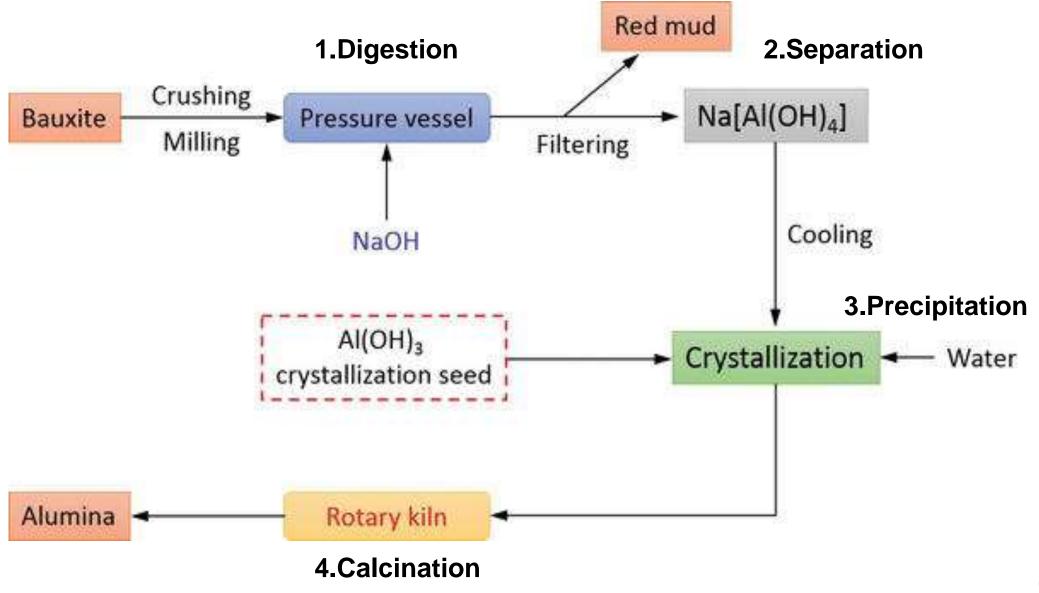
Alumina Hydrate 99.6% Alumina (Al<sub>2</sub>O<sub>3</sub>)

#### **Electrometallurgy / Hall-Heroult Process**


Elelctrolysis of Alumina

>99.5% Aluminium (Al)




### **Bayer's Process Overview**

- ➢ In the 1890s, Austrian chemist Carl Josef Bayer invented a revolutionary process for extracting alumina from bauxite.
- Some 90% of alumina refineries still use the *Bayer process* to refine bauxite.
- > The four key steps of Bayer's Process:





# **Schematic Flow Sheet of Bayer's process**





# **Challenges with Humate Impurities**

> Bauxite ore naturally contains organic materials (Humate).

The presence of humate in the Sodium aluminate liquor adversely affects the brightness and fineness of the precipitated alumina hydrate.



**Unwanted Colouration in Alumina Hydrate** 



**Desired Alumina Hydrate Colour** 



# **Kimberlite's Solution**

### **Importance of the humate removal:**

Improved Alumina Hydrate Quality

- Whiteness
- Fineness

### Enhanced Processing Efficiency

Precipitation Filtration

M/s Kimberlite has developed an additive that effectively removes soluble humate material from the sodium aluminate liquor without impacting liquor productivity.



# **Experimental Studies**

### **Three-Stage Digestion Process for Liquor Preparation:**

#### **Mixture of First Cycle:**

•200 grams of bauxite ore powder•200 ml of 50% caustic lye solution•400 ml of distilled water

#### **Heating Stages:**

•30 minute boil

•1 hour simmer at 90°C

#### Second & Third Cycle:

•200 grams of bauxite ore powder (Fresh)•Previous Cycle Supernatant liquor



**First Cycle Mixture** 



# **Filtration for Humate Removal:**

### **Sample Preparation:**

• 50 ml aliquots of filtered liquor were distributed into individual flasks.

# **Additive Dosing:**

• Measured amounts of humate removal additive (0 ppm to 200 ppm) were added to each flask.

### Heat Treatment:

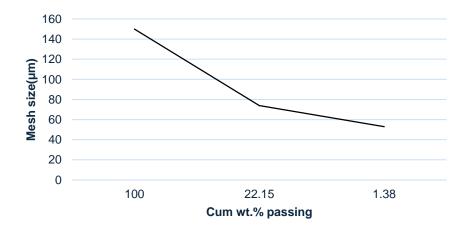
• Flasks were placed on a hot plate set at 90°C for 15 minute to promote additive-humate interaction.

# Filtration:

- After cooling, all treated liquors were refiltered using Whatman filter paper grade 42.
- The Filtrate absorbance was measured with a UV-visible spectrophotometer.








# **Result and discussions**

Bauxite Ore Particle Size Distribution:

| Mesh no | Mesh size (µm) | Cum wt.%<br>passing |
|---------|----------------|---------------------|
| 100     | 150            | 100                 |
| 200     | 74             | 22.15               |
| 240     | 53             | 1.38                |



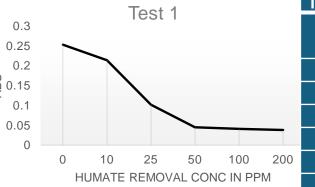


# **Characteristics of Bauxite ore**

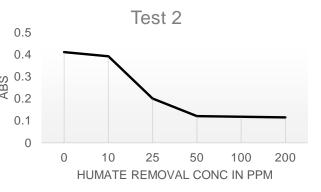


| S no | Characteristics                           | Bauxite |
|------|-------------------------------------------|---------|
| 1    | $AI_2O_3(t)\%$                            | 44.56   |
| 2    | <u>Fe<sub>2</sub>O<sub>3</sub>%</u> 24.83 |         |
| 3    | <b>3</b> Tio <sub>2</sub> % 2.02          |         |
| 4    | $SiO_2\%(t)$                              | 4.20    |
| 5    | SiO <sub>2</sub> %(r) 3.05                |         |
| 6    | ATH%                                      | 39.4    |
| 7    | Na <sub>2</sub> O%                        | -       |
| 8    | Org.C%                                    | 0.086   |
| 9    | 9 Min C% 0.184                            |         |
| 10   | 10 $P_2O_5\%$ 0.08                        |         |
| 11   | 1 $V_2O_5\%$ 0.062                        |         |
| 12   | <b>12</b> CaO% 0.018                      |         |
| 13   | <b>13</b> MnO% 0.096                      |         |
| 14   | K <sub>2</sub> O%                         | 0.042   |
| 15   | <b>15</b> ZnO% 0.0064                     |         |
| 16   | MgO% Not traceable                        |         |
| 17   | 17 LOI at 1000 <sup>o</sup> c 24.05       |         |

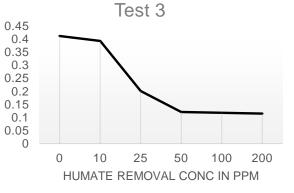
### **Organic Material:**

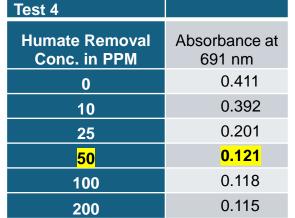

0.086% (Org. C) - Bauxite ore contain a problematic amount of organic carbon, which may come from decomposed plant matter trapped during formation.

Characteristics of bauxite used for the preparation of synthetic aluminate liquor.

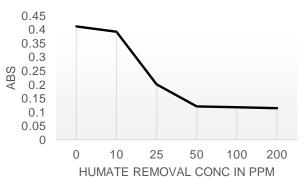



### **Absorbance results:**


| Test 1                         |                         |     |
|--------------------------------|-------------------------|-----|
| Humate Removal<br>Conc. in PPM | Absorbance at<br>691 nm |     |
| 0                              | 0.158                   | S   |
| 10                             | 0.15                    | ABS |
| 25                             | 0.053                   |     |
| <mark>50</mark>                | <mark>0.028</mark>      |     |
| 100                            | 0.025                   |     |
| 200                            | 0.019                   |     |




| Test 2                         |                         |   |
|--------------------------------|-------------------------|---|
| Humate Removal<br>Conc. in PPM | Absorbance at<br>691 nm |   |
| 0                              | 0.253                   | ( |
| 10                             | 0.214                   |   |
| 25                             | 0.102                   |   |
| <mark>50</mark>                | <mark>0.045</mark>      |   |
| 100                            | 0.041                   |   |
| 200                            | 0.038                   |   |

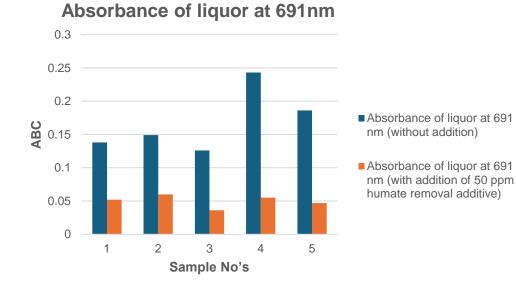



| Test 3                         |                         |     |
|--------------------------------|-------------------------|-----|
| Humate Removal<br>Conc. in PPM | Absorbance at<br>691 nm | (   |
| 0                              | 0.477                   | ABS |
| 10                             | 0.4                     | F ( |
| 25                             | 0.322                   |     |
| <mark>50</mark>                | <mark>0.129</mark>      |     |
| 100                            | 0.122                   |     |
| 200                            | 0.101                   |     |

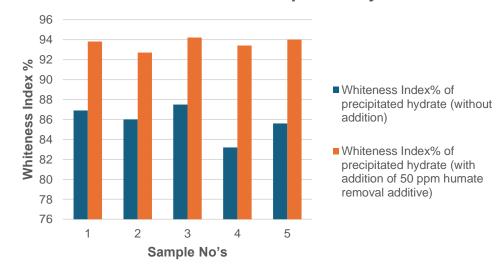









#### Lower Absorbance = More Removal




### **Whiteness Index Measurement**

| Sample<br>No | liquor at 691 nm<br>(without addition) | Absorbance of liquor<br>at 691 nm (with<br>addition of 50 ppm<br>humate removal<br>additive) | of precipitated | Whiteness Index% of<br>precipitated hydrate (with<br>addition of 50 ppm humate<br>removal additive) |
|--------------|----------------------------------------|----------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------|
| 1            | 0.138                                  | 0.052                                                                                        | 86.9            | 93.8                                                                                                |
| 2            | 0.149                                  | 0.060                                                                                        | 86.0            | 92.7                                                                                                |
| 3            | 0.126                                  | 0.036                                                                                        | 87.5            | 94.2                                                                                                |
| 4            | 0.243                                  | 0.055                                                                                        | 83.2            | 93.4                                                                                                |
| 5            | 0.186                                  | 0.047                                                                                        | 85.6            | 94.0                                                                                                |



Whiteness Index % of Precipitated hydrate





# Conclusion

M/s Kimberlite's specialty chemical effectively reduces reddish brown colour in alumina hydrate caused by humate presence.

Study results suggest a **50 ppm** dosage range for efficient humate removal.

The addition of a humate removal additive resulted in a significant improvement in whiteness index, ranging from 6.9% to 11%.

# Acknowledgement

### We thank M/s Kimberlite Chemicals India Private Limited for their publishing support.

# Thank you

hemanth@kimberliteindia.com