

भारत सरकार/ Govt. of India एवं रोजगार मंत्रालय/ Ministry of Labour & Employment सुरक्षा महानिदेशालय/ Directorate General of Mines Safety

Mines Safety Association Karnataka

Mining Engineers Association Of India

National Conclave-2024

A Presentation on PROBLEMS AND SOME PROBABLE SOLUTIONS IN QUARRY SECTOR WITH SPECIAL REFERENCE TO ROCK BLASTING

Dr. Ram Chandar Karra Professor & Former Head Department of Mining Engineering National Institute of Technology Karnataka- Surathkal Mangalore- 575025

Yohan Yejerla Director of Mines Safety Ballari Region

Contents

- Introduction
- Quarrying
- Case Studies
- Best Practices
- Problems & Some Suggestions

History of Quarrying

- Mining is extraction of mineral from earth's crust. Though any open pit forms a quarry, in general quarry term is limited to extraction of stone (including sand) for building materials for any construction project.
- Quarries have been used for thousands of years.
- Ancient Egyptians built the Great Pyramids with massive limestone and granite blocks cut by hand from nearby quarries.
- At a site in Pipestone National Monument, in the U.S. state of Minnesota, they quarried for stones to make calumets, or ceremonial smoking pipes. Calumets, made of a type of metamorphic rock called catlinite or pipestone.
- <u>Flint</u>stone (used to make tools) was known and exploited by the inhabitants of the <u>Indus Valley civilization</u> by the 3rd millennium BCE.
- □ There are many evidences of usage of rock for different tools in the history long ago.
- □ Infact Quarrying is part of Mining, the history of Mining dates back to more than 4000 years.

Aggregates: Aggregates, such as crushed stone, sand, and gravel, are the most common materials used in the construction of infrastructure projects. They are used as a base or sub-base for roads, as well as in concrete and asphalt mixes for pavement construction.

Dimension stones: Dimension stones used for cladding, flooring, and other decorative purposes in buildings and monuments.

Riprap: Riprap, which is large rocks or concrete blocks, is used to protect shorelines, embankments, and other erosion-prone areas from the effects of water and wind.

Ballast: Ballast, which is a layer of crushed stone or gravel placed under railroad tracks, is used to provide stability and drainage to the tracks.

Fill material: This is a type of soil or rock that is used to fill in areas where the ground has been excavated for construction or other purposes.

Need for Quarrying

- Quarrying is essential to supply large quantity of raw material for infra projects.
- Sand mining is banned /restricted in many states, so fine aggerates are also to be supplied by quarry sector in place of sand.
- On the other hand, Quarrying/mining is being treated as a negative activity in general and facing many problems.

Some of the problems faced by Quarry sector

- Lack of availability of good deposits
- Stringent regulations
- Multiple reregulating bodies
- Close to human habitats and sensitive areas
- Non cooperation of local people
- Linking land slides (slope stability) to quarrying activity in the recent past.
- Negative image of rock blasting, where as blasting is essential in quarries.

- After obtaining the Lease from DMG, Quarry plan will be prepared and submitted to SEAC.
- SEAC is asking now a days two specific scientific studies
 - Scientific study to assess the stability of slopes
 - Scientific study to assess the effect of blasting on the surrounding structures

During my last 22 years of service

- Completed 220 industry sponsored consultancy projects
- 100 projects related to rock blasting
- 100 projects related to slope stability
- 20 projects other areas
- Among them
- 65 projects are related to only quarry sector in the states of Karnataka, Tamil Nadu, Kerala, Andhra Pradesh
- A few case studies are presented here

Blasting is a process of breaking the rockmass using <u>chemical</u> energy in the form of explosives

Purpose of Blasting

- For digging mines
- In tunnels
- For construction works
 like hydel projects
- To clear hard rock for canals, pipelines, roads, buildings or any other civil projects

- □ To damage cities,
- Destroy ships and airplanes
- □ To kill enemy troops

Explosives are substances that produces a rapid, violent reaction when exposed to heat, a strong blow or a special detonator. During the reaction, explosives give off large amounts of gases at high pressure.

Factors Influencing Blast Performance

Controllable factors

- Blast geometry parameters
- Explosive properties
- Initiation system & initiation pattern

Uncontrollable factors

- Physio-mechanical properties
- Geological discontinuities

TABLE - PARAMETERS INFLUENCING GROUND VIBRATIONS(Wiss and Linehan, 1978)

Significant Moderately Significant	Insignificant
Parameter	
A. Controllable Variables	
Charge Weight per Delay ✓	
Length of Delay ✓ 	
Burden and Spacing ✓	
Stemming Amount 🗸	
Type of Stemming	\checkmark
Charge Length and	\checkmark
Diameter	
Angle of Borehole	\checkmark
Direction of Initiation	
Charge Weight per Blast	\checkmark
Charge Depth	\checkmark
Bare Vs. Covered	\checkmark
Detonating Cord	
B. Uncontrollable Variables	
General Surface Terrain	\checkmark
Type and Depth of ✓	\checkmark
Overburden	@nitk.edu.in, Mob:

Case Study-1

- This is a case study of a quarry in Thiruvananthapuram District of Kerala.
- This is a new quarry and there were concerns as there is a water tank at a distance of around 30m from the lease boundary.

Water tank

Quarry

Any scientific study requires

- A subject expert
- Should carry a pre-bast survey
- Blast design based on site conditions
- Execution of blasting along with monitoring with suitable instruments
- Post blast survey and analysis

Major Concerns

Ground Vibrations

Noise

- Fly rock
- Fragmentation
 (secondary breaking to be avoided)

Pre- Blast Survey

Trench

Blast Design Parameters

SI. No.	Parameters	Suggested Value
I	Diameter of Blasthole (mm)	32
2	Burden (m)	0.91
3	Spacing (m)	1.21
4	Depth of Blasthole (m)	1.51
5	No. of Blastholes	Maximum of 30
6	Explosive Charge / Hole (gm)	375
7	Maximum Charge / Delay (gm)	375
8	Initiation System	shocktube detonators
9	No. of Rows	Maximum of 3

PPV Values

Distance	Peak Particle Velocity	Noise
(m)	(mm/s)	(dB)
100	0.56	92.07
35	4.40	97.36
60	<0.51 (beyond trench)	-
55	3.25	86.71
75	<0.51 (beyond trench)	
65	2.38	99.35
80	1.679	118.5
50 krc/	Mohitk edu in 3.71 Moh. 944862	98.51
75	2 301	113.6

Case Study- 2

- □ This case study is taken in Guntur District of Andhra Pradesh.
- □ There are some houses and a temple beyond 200m.

Quarry

Pre-split plane

448627564

Case Study- 3

- This case study is taken in Anantapur District of Andhra Pradesh.
- There are some houses, school, water tank, temple beyond 300m.

Controlled Blasting is Site Specific

Case Study-1: Trench/ Open channel

Case Study-2: Pre- Split plane

□ Case Study-3:

Optimization of Blast Performance Vis A Vis Controlled Blasting

Rock Properties

- Blast Geometry
- Explosives & Initiating Devices
- Pre-split plane, trench, series of blastholes

All the above are being experimented in different quarries. Then what next?

Possibility / feasibility of Electronic Detonator

Use of High Speed Camera

TABLE - RANGE OF SURFACE AND IN-HOLE INITIATION ERRORS

Range of	Blast No.1		Blast No.2		Blast No.3	
% Error		In-hole		In-hole		In-hole
	Surface	Initiation	Surface	Initiation	Surface	Initiation
	Error	Error	Error	Error	Error	Error
<20	1	0	0	0	9	1
>20 - <40	6	0	5	0	5	3
>40 - <60	9	5	3	3	7	4
>60 - <80	4	6	3	8	1	3
- 08<						
	-	>10<60	-	2	G	Sufac
	20%	5%				e Inhole
					krc@nitl	k.edu.in, Mob: 9

 $PPV = K(D/SQRT(W)^{-b})$

1. Delay timing as per the design

In Case-1: MCD= Charge per hole In Case-2: MCD= 2x Charge per hole

Based on the above findings, a new R&D project was proposed to Ministry of Mines- Govt of India

"Definition of Delay Sequencing in Blast Designs Using Advanced Analytical Techniques for Optimization of Blast Fragmentation and Improving Mine Economics in Non-Coal Mines [Project Code: SNTMOM/67/2020]"

Under this project- Specific guidelines will be developed to use the electronic delay detonators timing with millisecond accuracy for the given geo-mining conditions

			Time [ms]		
Detonator no.	Electroacoustic	Open-circuit	High-speed	Data r	ecorder
	sensor	probe	camera	1-2 °C	30 °C
1	3746.30	3749.907	3749.9	error	3749.521
2	3754.38	3749.796	3749.8	error	3749.655
3	3747.25	3750.076	3750.1	3750.452	3750.155
4	3750.30	3750.040	3750.1	3750.533	3750.252
5	3747.32	3749.862	3749.9	3749.711	3750.060
6	3748.58	3749.890	3749.9	error	3749.753
7	3750.12	3749.897	3749.9	3750.325	3749.829
8	3748.77	3749.958	3749.9	error	3750.487
9	3749.61	3749.858	3749.8	error	3750.355
10	3750.18	3749.911	3750.0	error	3749.570
11	3752.47	3750.063	3750.0	error	_
12	3747.25	3750.103	3750.2	error	_
13	3751.71	3750.092	3750.0	3749.625	_
14	3752.13	3750.136	3750.2	error	-
15	3750.04	3750.103	3750.0	error	_
16	3747.41	3750.100	3750.0	error	_
17	3746.59	3749.950	3749.9	error	-
18	3751.30	3749.933	3750.0	error	_
19	3747.13	3750.036	3750.1	3750.373	_
20	3748.19	3749.947	3750.0	error	-
Average	3749.35	3749.983	3750.0	3750.170	3749.964
Deviation	2.24	0.102	0.1	0.396	0.344
Minimum time	3746.30	3749.796	3749.8	3749.625	3749.521
Maximum time	3754.38	3750.136	3750.2	3750.533	3750.487
Min-max	8.08	0.340	0.4	0.908	0.966

Table 1. Results of delay accuracy measurements (for a detonator programmed to 3750 ms)

Pytlik & Mertuszka (2021)

High Energy Materials, 2021, 13, 143 – 156; DOI 10.22211/matwys/0211 ISSN 2083-0165

Specific observations?

Best Practices.....

- Always ensure a proper free face for the blast
- Propagation of ground vibration should be away from the structure/ not towards the structure
- Clear off the small pieces of rock before starting drilling itself, so that fly rock can be avoided.
- Use muffling arrangement wherever human habitats are nearby.
- Follow all the safety aspects while handling of explosives and carrying out blasting operations

Maintain all the details of the blasts as a document

SI.	Parameters	Blast No. 1	Blast No. 2
	Date of Blast		
2	Time of Blast (Hours)		
3	Location of Blast		
4	Diameter of Blasthole (mm)		
5	Burden (m)		
6	Spacing (m)		
7	Depth of Blasthole (m)		
8	No. of Blastholes		
9	Explosive Charge / Hole (kg)		
10	Maximum Charge / Delay (kg)		
11	Total Charge / Blast (kg)		
12	Initiation System		
13	Initiation Pattern		
14	Location of Instrument I		
15	Distance I (m)		
16	PPV I (mm / s)		
17	Noise I (dB)		
18	Fly rock		
19	Fragmentation		
20	Other remarks		krc@pitk.ev
21			Ki C@IIIdkiC

Specific Observation?

- Man power is not properly trained
- No usage of safety devices , including safety shoes
- Improper handling of explosives & initiating devices
- Charging all the holes at a time, and blasting them group wise
- No blaster's shelter
- No proper warning system before blasting
- Improper initiating methods

Some Suggestions

- Quarrying sector needs skilled man power
- Man power requires training in handling of explosives to conduct blasting efficiently without compromising on safety
- □ Training centres (Need not be MVTCs)may be established in specific places where more no of quarries are in operation.
- □ Need based training and periodic training to be provided.
- 'Every quarry should have a manager' may be changed to 'One manager for maximum of 'N' number of quarries within a radius of 'x' km.
- Some of the regulations may be translated into regional leagues- Quarry owners Associations should take such responsibility and can involve some retired experts.
- Instead of enforcing the man power to follow regulations, educate them to realise the importance of following the rules and regulations (inters of safety)
- Quarry owners, regulating bodies, trainers/academicians, some retired technocrats, etc., should come together to improve the performance of man power in quarry sector.
- I AM ALWAYS THERE WITH YOU FOR ANY KIND OF TECHNICAL HELP

Finally, Two thumb rules Rule-1: 3, 4,5 Rule-2: 375

BIBLIOGRAPHY

- Anon, 1997. DGMS (Tech) / S&T Circular No. 7, dated 29-08-1997.
- **Dowding, C.H**., 1985. Blast Vibration Monitoring and Control, Prentice Hall. Inc., NJ, USA.
- Duvall, W.I. and Fogelson, D.E., 1962. Review of criteria for estimating damage of residence from blasting operations, USBM: 5968.
- Holmberg, R., Lundborg, N. and Runquist, G., 1981. Ground vibrations and damage criteria, SWEDEFO Report R85:1981.
- Nicholls, H.R., Johnson, C.F. and Duvall, W.I., 1971. Blasting vibrations and their effects on structures, USBM Bull: 656.
 - **Ricker, N.N.,** 1997. Transient Waves in Visco-elastic Media, Elsevier, New York.

- Ram Chandar, K., 2010. Influence of initiation system and pattern on blast results: Ph.D Thesis.
- Ram Chandar, K., Sastry., V.R., Chiranth Hegde., and Srisharan Shreedharan, 2016.
 Prediction of peak particle velocity using multi regression analysis: Case studies.
 Geomechanics and Geoengineering: An International Journal, (Indexed in Scopus, Publisher: T&F). DOI:10.1080/17486025.2016.1184763, ISSN: 1748-6033.
- Ram Chandar, K., Sastry, V.R., and Chiranth Hegde., 2016. A Critical comparison of regression models and artificial neural networks to predict ground vibrations. Geological and Geotechnical Engineering Journal (Indexed in Scopus, SCI, Google Scholar Impact Factor: 1.89). DOI: 10.1007/s10706-016-0126-3.
- □ Siskind, D.E., Stagg, M.S., Kopp, I.W. and Dowding, C.H., 1981. Structures response and damage produced by ground vibrations from surface mine blasting, USBMRI: 8507.
- □ Wiss, J.F. and Linehan, P.W., 1978. Control of Vibration and blast noise from surface coal mining, USBM OPR: 103-79.
- □ Wiss, J.F. and Nicholls, H.R., 1974. A study of damage to residential structure from blast vibrations, Special Publication, American Society of Civil Engineers, NY,73.

THANK YOU ALL